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Problem
• Standard seq2seq autoregressive models [2, 3] are trained by through
local supervision (NLL loss relative to next observed symbol) and
are myopic to global properties of the generated sequences.

– Can be lost in test conditions not seen during training (observa-
tion bias).

– Can produce situations not encountered in training data: rep-
etition of words, hallucinations, non-existent words, syntac-
tic/semantic inconsistencies, etc.

• The problem is more severe under limited training data conditions and
can lead to bad test performance → poor sample-efficiency .

• Can we exploit global properties observed on training data to
improve sample efficiency ?

Contributions
• Definition of GAMs. We formulate seq2seq training based on an

Energy-Based Model (EBM) [1] of a specific kind, a GAM: a combi-
nation of a standard Autoregressive component r and of a Log-Linear
component over a set of features. The combination is trained by log-
likelihood over the training data D.

• Adressing training challenges:

1. Training-1: Training the EBM by log-likelihood over D. We
use either Rejection Sampling (rs) or Self-Normalized Importance
Sampling (snis). At the end of this phase, we obtain an unnor-
malized EBM, which better represents the data than the initial
autoregressive component, but which can not be used directly for
inference.

2. Training-2: Distillation of the EBM obtained in Training-1,
using RS, to obtain an “augmented” training set D′, with |D′| �
|D|, from which we train a final autoregressive model πθ, which
can be used for inference or for computing sequence probabilities.

• Sample Efficiency Experiments on synthetic data showing better test
performance of πθ over r.

GAMs: Global Autoregressive Models
A GAM is an unnormalized potential (aka EBM) Pη(x|C) over x, parametrized
by a vector η = η1 ⊕ η2:

Pη(x|C) = rη1(x|C) · e〈λη2 (C), φ(x;C)〉. (1)
The factor rη1(x|C) is an autoregressive model for generating x in the context
C, parametrized by η1. The factor e〈λη2 (C), φ(x;C)〉 is a log-linear potential,
where φ(x;C) is a vector of predefined features and λη2(C) a vector of re-
als, computed by a network parametrized by η2. The normalized distribution
associated with the GAM is pη(x|C) =

Pη(x|C)

Zη(C)
, where Zη(C) =

∑
x Pη(x|C).

The features φ(x;C) provide prior knowledge to the model by drawing its
attention to potentially useful global sequence properties that may be difficult
for the AM component to discover on its own.
In our experiments, we focus on a simple unconditional (language modelling)
version of GAMs, of the form:

Pλ(x)
.
= r(x) · e〈λ, φ(x)〉 (2)

where the autoregressive factor r = rη1 is first learnt on the training dataset
of sequences D and then kept fixed, and where the parameter vector λ is then
trained on top of r, also on D. We denote by pλ(x) the normalized distribution
associated with Pλ(x).
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• Training-1: Exploit “moment-matching” prop-
erty of Log-Linear Models (Exponential Family):

∇λ log pλ(x) = φ(x)− Ex∼pλ(·) φ(x)

– Issue: we do not directly have pλ, but only
Pλ. We resort either to Rejection Sam-
pling (rs) from Pλ, or (more general) to Self-
Normalized Importance Sampling (snis) [5],
using r as our proposal function.

• Training-2: Obtain large D′ by rejection sam-
pling from Pλ, then distill πθ(x) from D′.

Experiments: strings with motifs
• Here, D consists of random binary

strings (of length 30), filtered by
the condition that they contain a
fixed motif 10001011111000

• Features: m (binary feature
m = 0 means motif is present),
d0, d1, d2, d3 are “distractor” bi-
nary features, with small corre-
lation with presence of motif (0
means feature is present).

• rs_distill (resp. snis_distill) is
the πθ obtained using rs (resp.
snis) in training-1, and distillation
in training-2.

• We vary D and observe CE (i.e.
perplexity) on test data (solid
lines), and also motif frequency
in samples from different models
(dotted lines).

Illustration
true 101100010111110001000001001001
r 011111000010111110001110001011
πθ 111010100010111110000111111100
features [m,_,_, d0, d1, d2, d3]
λ’s [− 10.1,_,_,−0.15,−0.06, 0.0,−0.14]
moments true [0.0,_,_, 0.47, 0.99, 1.0, 0.91]
moments r [0.95,_,_, 0.53, 0.99, 1.0, 0.91]
moments πθ [0.0006,_,_, 0.43, 0.99, 0.99, 0.91]
cross entropy (CE) true: 0.45, r: 0.56, πθ: 0.47
motif freqs true: 1.0, r: 0.045, πθ: 0.959

Results
|D| m: CE(T,r)

CE(T,πθ)
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mam: mtf_frq(πθ)
mtf_frq(r)

500 1.24± 0.07 1.19± 0.07 32.0 1.23± 0.03 1.16± 0.03 59.26

1000 1.24± 0.07 1.16± 0.07 23.87 1.21± 0.03 1.14± 0.03 26.29

5000 1.18± 0.08 1.09± 0.05 3.59 1.16± 0.05 1.08± 0.04 7.32

10000 1.08± 0.1 1.04± 0.02 0.89 1.02± 0.03 1.04± 0.03 1.0

20000 0.99± 0.01 1.02± 0.01 0.81 0.99± 0.0 1.02± 0.0 0.85

Discussion

• Training-1 vs. Training-2

– Training-2 can be more difficult than Training-1.
– In some extreme cases, the EBM obtained at the end of Training-1

is (i) a perfect representation of the true process, but (ii) cannot
be approximated by an autoregressive model.

• Connections with Reinforcement Learning (developped in [6])

– The unnormalized EBM Pλ can be seen as a form of reward, and
Training-2 as a form of “Distributional” Reinforcement Learning.

– Training-1 can then be seen as a form of Inverse RL, but where
the reward is obtained through max-likelihood, rather than being
externally imposed. We still have prior knowledge, but only in
terms of the features that we suggest the model to observe.


