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Problem formulation

Compute efficiently (in
sub-quadratic time in the
number of nodes N of the
graph) the following
expressions for every node v
of the given graph G:

tensor field defined on
the graph

integration similarity between two nodes
over all the (e.g. a function of the shortest-path
nodes distance between them)

Graph as a discretization of the 2-dim manifold:

efficient separator used in our
SF algorithm is critical for fast

integration X
our RFD algorithm

leverages graph
structure

implicitly via
eps-neighborhood
defined edges

a sphinx mesh with 1.7M faces; infeasible for
regular integration algorithms

Applications: interpolation on manifolds, topological masking mechanisms
for Transformers with structural inputs, physics simulations in curved spaces,
Wasserstein barycenter, (Fused) Gromov Wasserstein, ...

* equal contribution

SeparatorFactorization (SF)

works with input mesh-graphs

leverages their low-genus structure ( — small-size separators)

applies our new results in structural graph theory on fast graph
field integration via separator-based divide-and-conquer methods
and Fast Fourier Transform

O(N l()gz(N)) time complexity, for K governed by the exp map
of the shortest-path distance: O(N log"*¥(N))

encoding deviations of
the shortest-path
distances to the vertices
of S from distance to §

RFDiffusion (RFD)

e works with point cloud (no mesh needed)

e leverages the implicit graph structure given by the following ad-

Wa(i, j) = f(ni —ny)

e linearizes the adjacency matrix via Fourier-Transform based ran-
dom feature map mechanism

jacency matrix:

e O(N) time complexity, but for a specific class of graph diffusion
kernels, leveraging our novel decomposition of the exponentials of

low-rank matrices:
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low-rank
decomposition
of W via random
features
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1. Vertex Normal Prediction

e We predict vertex normals from its masked variants.
Fi= Y K(,j)F,
FEV\V
e Tested on 120 meshes for 3D-printed objects with a wide range
of sizes from the ThingilOk dataset.
1.2 Pre-processing Time

Interpolation Time Cosine Similarity
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2. Wasserstein Distances and Barycenters

e We study the OT problem of moving masses on a surface mesh.

e Gromov Wasserstein (GW) discrepancy (resp. Fused Gromov

Wasserstein discrepancy (FGW)): extension of Wasserstein dis-
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tances to graph-structured data.

151 —%— GW-cg-RFD
<% GW-cg

10 .
5 H,v""')_/ ._.MJ’:/
o = 0 =

2 42 6 8 10
Number of Points (x10%)

—e— FGW-RFD
20{ ~® FGW

Relative MSE
5

Runtime (x10? sec.)

12

2 a2 6 8 2 4 6 8 10 2 4 6 8 10
Number of Points (x10°) Number of Points (x10) Number of Points (x10°)

Total Runtime

Mesh  [v|  _TetalRuntime — nyqp  njon v MSE
BF  RFD BF  SF

Alien 5212 806 039 0041 Dice 1468 68 49 0063

Duck 9862 4536 110 0002 Duck 9862 392 194 0002

Land 14738 14764 217 0017 Land 14738 907 389 0015

Octocat 18944 30284 336 0027 bubblepor2 18633 1132 483 0081




