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Low rank data

▶ in many applications data is organized in a matrix, A ∈ Rm×n

▶ user ratings over movies
▶ gene expressions in cells

▶ in practice the data is often approximately low rank [Eckart+Young36, Jolliffe02,
Candès+Recht09, Udell+16]

Aij ≈ bT
i cj, bi, cj ∈ Rr, r ≪ min{m,n}

▶ per-user coefficients and per-movie factors
▶ per-cell coefficients and per-gene factors
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Low rank matrix approximation

=

▶ find B ∈ Rm×r and C ∈ Rn×r such that A ≈ BCT

minimize ∥A − BCT∥2
F =

∑m,n
i,j=1(Aij − bT

i cj)
2

▶ storage compression from mn to 2(m + n)r
▶ interpretable factors
▶ solved via the singular value decomposition (SVD), proposed in 1907 [Schmidt07]
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Hierarchically structured data

▶ biology: cells, tissues, organs
▶ geography: cities, states, countries
▶ finance: industries, groups, sectors
▶ healthcare: patients, clinics, regions
▶ education: students, classrooms, schools
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Contiguous multilevel low rank matrices

▶ an m × n contiguous multilevel low rank (MLR) matrix A with L levels

+ + + +...

A = A1 + · · ·+ AL, Al = diag(Al,1, . . . ,Al,pl)

▶ groups in partitions are contiguous ranges of row/column indices
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Contiguous multilevel low rank matrices

▶ an m × n contiguous multilevel low rank (MLR) matrix A with L levels

+ + + +...

Al,k = Bl,kCT
l,k, Bl,k ∈ Rml,k×rl , Cl,k ∈ Rnl,k×rl

▶ groups in partitions are contiguous ranges of row/column indices
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Factor form
▶ arrange factors such that A = B̃C̃T

... ...
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Compressed form

▶ Bl =

 Bl,1
...

Bl,pl

 ∈ Rm×rl , Cl =

 Cl,1
...

Cl,pl

 ∈ Rn×rl

▶ B =
[

B1 · · · BL ]
∈ Rm×r, C =

[
C1 · · · CL ]

∈ Rn×r

▶ r = r1 + · · ·+ rL is the MLR-rank of A
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Multilevel low rank matrices

▶ general m × n MLR matrix has the form

P

 + + + +...

QT

▶ P ∈ Rm×m is the row permutation matrix
▶ Q ∈ Rn×n is the column permutation matrix

▶ general hierarchical partition of the row and column index sets
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Multilevel low rank matrices

▶ permutations P and Q
▶ the number of levels L
▶ the block dimensions ml,k and nl,k, l = 1, . . . ,L, k = 1, . . . , pl
▶ the two matrices B and C
▶ ranks ri s.t. r1 + · · ·+ rL = r
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Related work
▶ Hierarchical matrices

▶ H-matrix [Greengard+Rokhlin87, Hackbusch99]
▶ H2-matrix [Hackbusch+Borm02, Darve00]
▶ hierarchically off-diagonal low-rank (HODLR) [Aminfar+16]
▶ hierarchical semiseparable (HSS) matrix [Chandrasekaran+06]

▶ block low rank matrices [Amestoy+15]
▶ butterfly matrices [Parker95]

▶ Monarch matrices [Dao+22]

x x x
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Example: Distance matrix

▶ distance matrix for Venice roadmap
▶ n = 5893 nodes and 12098 edges
▶ L = 14 levels and MLR-rank r = 98
▶ compression ratio 30 : 1

Method Error (%) Storage (×105)
LR 0.72 5.78
LR+D 0.71 5.78
HODLR 2.50 5.79
Monarch 0.87 5.88
MLR 0.37 5.78
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Properties of MLR matrices

▶ matrix-vector multiply in 2(m + n)r flops vs mn in the dense case
▶ linear system solve

▶ via recursive Sherman-Morrison-Woodbury in O(nr2) vs O(n3) in the dense case
▶ via direct sparse solver

Ax = b ⇐⇒
[
C̃T −I
0 B̃

] [
x
z

]
=

[
0
b

]
▶ k largest eigenvalues, total cost at iteration k

▶ Arnoldi iteration with O(nrk + nk2) vs O(n2k + nk2) dense case
▶ Lanczos algorithm with O(nrk + nk) vs O(n2k + nk) dense case
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Example: Linear system solve

▶ solve Ax = b with A positive definite MLR matrix
▶ n = 105

▶ dense matrix in single precision requires 37Gb
▶ hierarchical partition p1 = 1, p2 = 3, p3 = 7, p4 = 16, p5 = 105

▶ ranks r1 = 30, r2 = 20, r3 = 10, r4 = 5, r5 = 1
▶ compression ratio 750 : 1
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Example: Linear system solve

▶ direct dense solve using Cholesky
▶ extrapolated time (from 10s for 104 × 104 matrix) is 2.7h on M2 chip

▶ recursive SMW
▶ solve in 200ms on M2 chip

▶ MLR solve is ×50000 faster than the dense one
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Fitting problems

P

 + + + +...

QT

▶ how to fit the factors?
▶ how to allocate ranks across levels?
▶ how to choose hierarchical partition?
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Factor fitting

▶ fix hierarchical partition and rank allocation
▶ optimize over the factors B and C
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Alternating least squares

... ...

▶ recall Â = B̃C̃T = Â(B,C) is bi-linear
▶ an alternating least squares (ALS) algorithm to minimize

∥PTAQ − Â(B,C)∥2
F

over B, then C, then B, etc
▶ O(mnr) per iteration (conjugate gradient)
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Block coordinate descent

+ + + +...

▶ update the factors in one level in each iteration
▶ for level l we choose Bl,k and Cl,k to minimize∥∥R − blkdiag(Bl,1CT

l,1, . . . ,Bl,plCT
l,pl)

∥∥2
F

where R is the current residual

R = PTAQ −
∑
j ̸=l

blkdiag(Bj,1CT
j,1, . . . ,Bj,pjCT

j,pj)

▶ O(mnr) for single V-epoch (blockwise partial SVDs)
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Comparison

▶ one iteration for ALS: approximately minimizing over B and then over C
▶ one iteration for BCD: one V-epoch
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Comparison
▶ discrete Gauss transform matrix
▶ m = 5000 and n = 7000, L = 14, and r1 = · · · = r14 = 5
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Rank allocation

▶ fix hierarchical partition
▶ optimize over the factors B and C and ranks r1, . . . , rL s.t. r1 + · · ·+ rL = r
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Rank exchange algorithm

R = PTAQ −
∑
j̸=l

blkdiag(Bj,1CT
j,1, . . . ,Bj,pjCT

j,pj)

+ + + +...
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Rank exchange algorithm

R = PTAQ −
∑
j̸=l

blkdiag(Bj,1CT
j,1, . . . ,Bj,pjCT

j,pj)

▶ incrementing rank allocated to level l by 1, decreases the Frobenius norm squared error
by

δ+l =

pl∑
k=1

σ2
rl+1(Rl,k)

▶ decrementing rank allocated to level l by 1, increases Frobenius norm squared error by

δ−l =

pl∑
k=1

σ2
rl(Rl,k)
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Rank exchange algorithm

▶ find the levels i ̸= j for which the predicted net decrease is maximized

i, j = argmax
i ̸=j

(
δ+i − δ−j

)
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Rank exchange algorithm
▶ discrete Gauss transform matrix
▶ m = 5000, n = 7000, L = 14, and r = 28
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Example: Asset covariance matrix
▶ 5000 asset returns over 300 days
▶ Global Industry Classification Standard (GICS)

5000 assets

157 sub-industries

69 industries

24 groups
11 sectors

▶ m = n = 5000, r = 30, and L = 6
▶ compression ratio 80 : 1
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Example: Asset covariance matrix
▶ m = n = 5000, r = 30, and L = 6
▶ compression ratio 80 : 1

Method Error (%) Storage (×105)

LR 16.2 1.50
LR+D 15.4 1.50
HODLR 38.8 1.50
Monarch 18.0 1.56
MLR 15.4 1.50
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Nested spectral dissection

1. R̃1 = (A − B1,1CT
1,1)

2. R1 = PT
1 R̃1Q1

▶ permutations PT
1 ,QT

1 maximize the sum of squares of residuals within the two diagonal
blocks

3. R̃2 = R1 −
[
B2,1CT

2,1 0
0 B2,2CT

2,2

]
4. R2 = PT

2 R̃1Q2
▶ permutations PT

2 ,QT
2 maximize the sum of squares of residuals within the four diagonal

blocks, local for the two groups above

5. R̃3 = R2 −


B3,1CT

3,1 0 0 0
0 B3,2CT

3,2 0 0
0 0 B3,3CT

3,3 0
0 0 0 B3,4CT

3,4


6. . . .

Hierarchy fitting 29



Permutation

▶ represent the partition as a vector x ∈ {−1, 1}n

▶ maximize the sum of squares of residuals within the two groups

xTSx =
∑
i,j

xixjR2
ij =

∑
xi=xj

R2
ij −

∑
xi ̸=xj

R2
ij = 2

∑
xi=xj

R2
ij − ∥R∥2

F

▶ maximum bisection problem

maximize xTSx
subject to x ∈ {−1, 1}n, 1Tx = 0
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Permutation
▶ spectral partition

minimize xT(diag(S1)− S)x
subject to ∥x∥2

2 = n, 1Tx = 0
▶ e.g., the sum of terms on the block diagonal increases by 80% after permutation
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Example: Discrete Gauss transform matrix
▶ Aij = e−∥ti−sj∥2

2/h2 and sj, ti ∈ Rd

▶ m = 5000, n = 7000, r = 28, L = 14, d = 3, and h = 0.2
▶ compression ratio 100 : 1

Method Error (%) Storage (×105)

LR 41.8 3.36
HODLR 72.5 3.39
Monarch 44.0 3.60
MLR bottom 16.8 3.36
MLR uniform 21.8 3.36
MLR top 25.8 3.36
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PSD MLR
▶ symmetric positive semidefinite (PSD) MLR matrices

▶ each block Al,k = Bl,kBT
l,k is PSD

... ...

▶ PSD MLR is a covariance matrix in multilevel factor model (MFM) [Aitkin+81]

Σ =
[

F D1/2 ] [
F D1/2 ]T

= FFT + D
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Multilevel factor model

y = Fz + e

▶ F ∈ Rn×s is structured factor loading matrix
▶ z ∈ Rs are factor scores, with z ∼ N (0, Is)

▶ e ∈ Rn are unique terms, with e ∼ N (0,D)
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MLE-based fitting

▶ observe Y =

 yT
1
...

yT
N

 ∈ RN×n

▶ the log-likelihood based on N points

ℓ(F,D;Y) = −nN
2 log(2π)− N

2 log det(FFT + D)− 1
2 Tr((FFT + D)−1YTY)

▶ if also observe latent data z1, . . . , zN ∈ Rs, the log-likelihood simplifies

ℓ(F,D;Y,Z) = − (n + s)N
2 log(2π)− N

2 log detD − 1
2∥D−1/2(Y − ZFT)∥2

F − 1
2∥Z∥2

F
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EM algorithm

▶ E step: compute

Q(F,D;F0,D0) = E
(
ℓ(F,D;Y,Z) | Y,F0,D0)

▶ M step: find F1 and D1 using

maximize Q(F,D;F0,D0)
subject to

[
F D1/2 ]

is the factor of PSD MLR
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Recursive Sherman-Morrison-Woodbury
▶ PSD MLR

Σ = F1FT
1 + · · ·+ FL−1FT

L−1 + D
▶ define

F(l+1)+ =
[

Fl+1 · · · FL−1
]

M0 = (F(l+1)+FT
(l+1)+ + D)−1Fl

Hl = M0(Iplrl + FT
l M0)

−1/2

▶ SMW

(Fl+FT
l+ + D)−1 = (F(l+1)+FT

(l+1)+ + D)−1 − HlHT
l

▶ inverse is MLR matrix

Σ−1 = −H1HT
1 − · · · − HL−1HT

L−1 + D−1
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Efficient computation

▶ computation of MLR Σ−1

▶ time complexity O(nr2 + pL−1rmaxr2)
▶ extra memory used is 3nr + 2pL−1rmaxr

▶ EM iteration
▶ time complexity O(pL−1nr2 + nr3 + pL−1nrN + pL−1rmaxr2)
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Example: Asset covariance matrix
▶ n = 5000, L = 6, N = 300, and r = 30
▶ compression ratio 80 : 1
▶ log-likelihood for factor model (left) and multilevel factor model (right)
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Example: Synthetic multilevel factor model
▶ n = 1000, L = 5, r = 15, s = 77, SNR of 4
▶ compression ratio 30 : 1
▶ histograms over 100 runs each with sample size 200
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Summary

▶ MLR matrices are natural extensions for low rank matrices
▶ fast linear algebra and storage compression
▶ Frobenius norm and MLE-based fitting methods
▶ model general hierarchical structures
▶ identify factors explaining data at global and local scales
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Thanks!
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