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Motivation

Multilevel low rank (MLR) matrices are an extension of low rank matrices and factor
models in the squared case. MLR generalize low rank matrices in the sense of giving
a substantial reduction in storage and speed up in computing matrix-vector products,
compared to a full dense matrix. MLR matrices are closely related to hierarchical matri-
ces, which have been studied since at least the late 1980s [1, 2].

Multilevel low rank matrices

An m × n contiguous MLR matrix A with L levels has the form
A = A1 + · · · + AL,

where Al = blkdiag(Al ,1, . . . , Al ,pl ), l = 1, . . . , L, and pl is the size of the partition
at level l , with p1 = 1. We refer to Al ,k as the kth block on level l of size ml ,k × nl ,k ,
for l = 1, . . . , L, k = 1, . . . , pl .
We require rank Al ,k ≤ rl , and for l = 1, . . . , L, k = 1, . . . , pl the factored form is

Al ,k = Bl ,kCT
l ,k , Bl ,k ∈ Rml ,k×rl , Cl ,k ∈ Rnl ,k×rl .

We refer to r = r1 + · · · + rL as the MLR-rank of A.
Example. The sparsity patterns of A2 and A3 are shown below.
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A general m × n MLR matrix Ã has the form
Ã = PAQT ,

where A is a contiguous MLR matrix, P and Q are permutation matrices.

Two-matrix form

Factor form. For each level l = 1, . . . , L define
B̃l = blkdiag(Bl ,1, . . . , Bl ,pl ) ∈ Rm×pl rl , C̃l = blkdiag(Cl ,1, . . . , Cl ,pl ) ∈ Rn×pl rl .

Define
B̃ =

[
B̃1 · · · B̃L

]
∈ Rm×s , C̃ =

[
C̃1 · · · C̃L

]
∈ Rn×s ,

with s =
∑

l pl rl . Then we can write A as

A = B̃C̃T ,

exactly the form of a low rank factorization of A.
Compressed factor form. We also arrange the factors into two arrays or matrices
with dimensions m × r and n × r . We vertically stack the factors at each level

B l =

 Bl ,1...
Bl ,pl

 ∈ Rm×rl , C l =

 Cl ,1...
Cl ,pl

 ∈ Rn×rl , l = 1, . . . , L.

We horizontally stack these matrices to obtain two matrices
B =

[
B1 · · · BL ] ∈ Rm×r , C =

[
C1 · · · CL ] ∈ Rn×r .

Our Contribution

1. We introduce a novel definition of multilevel low rank matrix.
2. We present two complementary block coordinate descent algorithms for factor fitting.
3. We present a greedy algorithm for rank allocation that is able to re-allocate the rank

assigned to each level in the hierarchy, to improve the fitting.
4. An open-source package that implements these methods,

github.com/cvxgrp/mlr_fitting.

General MLR fitting

The most general MLR fitting problem is
minimize ∥A − Â∥2

F
subject to Â is rank r MLR,

where A ∈ Rm×n is the given matrix to be fit, Â is the variable. In this general version
of the problem the data are A, the matrix to be fit, and r , the rank.
We seek permutations P and Q, the number of levels L, the block dimensions ml ,k and
nl ,k , l = 1, . . . , L, k = 1, . . . , pl , the two matrices B and C , and the rank allocation,
i.e., ri for which r1 + · · · + rL = r .

Factor fitting
We fix the combinatorial aspects of Â, and only optimize over the (real) coefficients in
the factors, i.e., the matrices B and C . We propose to use 1) block coordinate descent
and 2)alternating least squares for factor fitting.

Rank allocation

We fix the hierarchical partition but not the ranks, i.e., we optimize over B and C , and
also the ranks r1, . . . , rL, subject to r1 + · · · + rL = r . The rank allocation problem is a
natural one when the hierarchical row and column partitions are given or already known.
Define the residual matrix

R = Ã −
∑
j ̸=l

blkdiag(Bj ,1CT
j ,1, . . . , Bj ,pjC

T
j ,pj)

If we increase/decrease the rank allocated to (each block of) level l by 1, the de-
crease/increase in Frobenius norm squared error is

δ+
l =

pl∑
k=1

σ2
rl+1(Rl ,k), δ−

l =
pl∑

k=1
σ2

rl (Rl ,k).

These numbers predict the decrease or increase when only the level l factors are changed.
In each iteration of the rank allocation algorithm, we find the level i and j , with i ̸= j ,
for which the predicted net decrease is maximized,

i , j = argmax
i ̸=j

(
δ+
i − δ−

j

)
.

Numerical Experiments

The discrete Gauss transform (DGT) matrix is given by

Aij = e−∥ti−sj∥2
2/h2

,

where sj ∈ Rd for j = 1, . . . , n and ti ∈ Rd for i = 1, . . . , m are source and target
locations respectively and h > 0 is the bandwidth. We set sources and targets to be
uniformly distributed in a unit cube [0, 1]d with d = 3, m = 5000, n = 7000, and
h = 0.2. We fix the rank as r = 28.
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Figure 1. Fitting error during rank allocation, starting from three different initial allocations of rank.

Method Error (%) Storage (×105)
LR 41.779 3.360
HODLR 72.549 3.385
MLR bottom 16.753 3.360
MLR uniform 21.766 3.360
MLR top 25.759 3.360
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Figure 2. Rank r = 28 partitioning across L = 14 levels during fitting of DGT matrix, starting from the
bottom level l = 14, uniform and the top level l = 1 initial allocation.

References

[1] Leslie Greengard and Vladimir Rokhlin.
A fast algorithm for particle simulations.
Journal of Computational Physics, 73(2):325–348, 1987.

[2] Wolfgang Hackbusch.
Hierarchical matrices: algorithms and analysis, volume 49.
Springer, 2015.

parshakova.github.io ICME Xpo Student Poster Session tetianap@stanford.edu

https://github.com/cvxgrp/mlr_fitting
parshakova.github.io
mailto:tetianap@stanford.edu

