A Proximal Minorant Method for Oracle-Structured Distributed Optimization

Tetiana Parshakova Fangzhao Zhang Stephen Boyd (with lots of input from others)

Stanford University

7/18/22

Outline

Oracle-structured distributed optimization

Proximal minorant algorithm

Oracle-structured distributed optimization

Distributed optimization overview

distributed optimization has been studied since the 1940s

- many methods can be used for distributed optimization
 - dual decomposition
 - alternating directions method of multipliers (ADMM)
- classical setting
 - easy to evaluate agent values, (sub)gradients
 - coordinator performs simple operations, e.g., averaging
- our setting
 - substantial workload per agent
 - so coordinator can do much more than, e.g., just average

Oracle-structured distributed optimization problem

minimize
$$h(x) = f(x) + g(x)$$

▶
$$x = (x_1, ..., x_M) \in \mathbf{R}^n$$
 is variable, $x_i \in \mathbf{R}^n$
▶ $f(x) = \sum_{i=1}^M f_i(x_i)$ is block separable

- ▶ *f_i* convex, accessed by value/subgradient oracle
- ▶ $g : \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$ is convex structured objective function
- infinite values of g encode constraints
- coordinator can solve an optimization problem involving g

Our goals

we are interested in methods that

- find good points in tens of iterations or fewer
- solve convex problems exactly
- do something reasonable when f_i aren't convex
- have zero hyper-parameters to tune
- handle agent delays and failures

Methods

- (accelerated) proximal subgradient
- ADMM, Douglas-Rachford
- cutting plane/bundle methods
- we've settled on cutting-plane/bundle methods (for now)
- these methods build up a piecewise linear model of each f_i

Example: Consensus problem

minimize
$$\sum_{i=1}^{M} f_i(x_i)$$

subject to $x_1 = \cdots = x_M$

•
$$x_i$$
 are variables, f_i are convex

to put in oracle-structured form, use

$$g(x) = \begin{cases} 0 & x_1 = \cdots = x_M \\ \infty & \text{otherwise} \end{cases}$$

(indicator function of consensus)

Agents

when queried by coordinator at x_i, agent returns

$$f_i(x_i), \qquad q_i \in \partial f_i(x_i)$$

• agents can include *private variables* z_i , with

$$f_i(x_i) = \min_{z_i} F_i(x_i, z_i)$$

▶ to evaluate $f_i(x_i)$ and $q_i \in \partial f_i(x_i)$ we solve an optimization problem

Example: Supply chain

Source
$$\rightarrow$$
 Trans-
shipment \rightarrow \cdots \rightarrow Trans-
shipment \rightarrow Sink

- single commodity network with M trans-shipment components in series
- ► trans-shipment component *i* routes input flows a_i ∈ ℝ^{m_i}₊ to output flows b_i ∈ ℝ^{n_i}₊, with cost f_i(a_i, b_i)
- flow is conserved: $\mathbf{1}^T a_i = \mathbf{1}^T b_i$
- ▶ series connection means $b_1 = a_2, \ldots, b_{M-1} = a_M$
- source and sink costs $\psi^{
 m src}(a_1) + \psi^{
 m sink}(b_M)$

Oracle-structured form

$$\bullet x_i = (a_i, b_i)$$

- *f_i(x_i)* is minimum cost of trans-shipment problem with quadratic edge cost, edge capacities
- Solve trans-shipment problem with n_im_i private variables to evaluate f_i(x_i), q_i ∈ ∂f_i(x_i)

structured objective term is

$$g(x) = \psi^{\rm src}((x_1)_{1:m_1}) + \psi^{\rm sink}((x_M)_{m_M+1:m_N}) + \mathcal{I}(x)$$

 $\mathcal{I}(x)$ is indicator function of flow constraints

roughly speaking:

- $f_1 + \cdots + f_M$ is the shipping cost
- ► g is the negative gross profit

Outline

Oracle-structured distributed optimization

Proximal minorant algorithm

Agent objective minorants

• algorithm maintains a *minorant* \hat{f}_i : $\hat{f}_i(x) \le f_i(x)$ for all x

• at iteration k, query each agent i at $x_i^{(k+1)}$ to get

$$f_i(x_i^{(k+1)}), \qquad q_i^{(k+1)} \in \partial f_i(x^{(k+1)})$$

update minorant of agent i

$$\hat{f}_i^{(k+1)}(x_i) = \max\left(\hat{f}_i^{(k)}(x_i), \ f_i(x_i^{(k+1)}) + (q_i^{(k+1)})^{\mathcal{T}}(x_i - x_i^{(k+1)})
ight)$$

update minorant of h

$$\hat{h}^{(k+1)}(x) = \hat{f}_1^{(k+1)}(x) + \cdots + \hat{f}_M^{(k+1)}(x_M) + g(x)$$

Bounds on optimal value

L^(k) = min_x ĥ^(k)(x) is lower bound on optimal value
 U^(k) = min{U^(k-1), h(x^(k))} is upper bound on optimal

value

• duality gap is $U^{(k)} - L^{(k)}$

relative duality gap is

$$\omega^{(k)} = \frac{U^{(k)} - L^{(k)}}{\min\{|U^{(k)}|, |L^{(k)}|\}}$$

▶ stopping criterion is ω^(k) ≤ ε^{rel}
 ▶ guarantees relative suboptimality less than ε^{rel}

Proximal minorant algorithm

Algorithm

given $x^{(0)} \in \operatorname{dom} h$, $h(x^{(0)})$, initial minorants $\hat{f}_i^{(0)}$ and stepsize $\rho^{(0)}$.

for k = 0, 1, ...

- 1. Check stopping criterion.
- 2. Update iterate. $x^{(k+1)} = \operatorname{argmin}_{x} \left(\hat{h}^{(k)}(x) + (\rho^{(k)}/2) \|x x^{(k)}\|_{2}^{2} \right).$
- 3. Query agents. Evaluate $f_i(x_i^{(k+1)})$ and $q_i^{(k+1)} \in \partial f_i(x_i^{(k+1)})$.
- 4. Update minorants. Update $\hat{f}_i^{(k+1)}$, $i = 1, \dots, M$, and $\hat{h}^{(k+1)}$.

• several choices for inverse step sizes $\rho^{(k)} > 0$

Supply chain instance

• M = 5 trans-shipment components, with (m_i, n_i)

(20, 30), (30, 40), (40, 25), (25, 35), (35, 20)

- 300 variables; 4975 private variables
- proximal minorant algorithm $\epsilon^{\rm rel} = 0.01$

Optimality gap (relative)

