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Distributed optimization overview

▶ distributed optimization has been studied since the 1940s
▶ many methods can be used for distributed optimization

▶ dual decomposition
▶ alternating directions method of multipliers (ADMM)

▶ classical setting
▶ easy to evaluate agent values, (sub)gradients
▶ coordinator performs simple operations, e.g., averaging

▶ our setting
▶ substantial workload per agent
▶ so coordinator can do much more than, e.g., just average
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Oracle-structured distributed optimization problem

minimize h(x) = f (x) + g(x)

▶ x = (x1, . . . , xM) ∈ Rn is variable, xi ∈ Rni

▶ f (x) =
∑M

i=1 fi (xi ) is block separable

▶ fi convex, accessed by value/subgradient oracle

▶ g : Rn → R ∪ {∞} is convex structured objective function

▶ infinite values of g encode constraints

▶ coordinator can solve an optimization problem involving g
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Our goals

we are interested in methods that

▶ find good points in tens of iterations or fewer

▶ solve convex problems exactly

▶ do something reasonable when fi aren’t convex

▶ have zero hyper-parameters to tune

▶ handle agent delays and failures

Oracle-structured distributed optimization 5



Methods

▶ (accelerated) proximal subgradient

▶ ADMM, Douglas-Rachford

▶ cutting plane/bundle methods

▶ we’ve settled on cutting-plane/bundle methods (for now)

▶ these methods build up a piecewise linear model of each fi
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Example: Consensus problem

minimize
∑M

i=1 fi (xi )
subject to x1 = · · · = xM

▶ xi are variables, fi are convex

▶ to put in oracle-structured form, use

g(x) =

{
0 x1 = · · · = xM
∞ otherwise

(indicator function of consensus)
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Agents

▶ when queried by coordinator at xi , agent returns

fi (xi ), qi ∈ ∂fi (xi )

▶ agents can include private variables zi , with

fi (xi ) = min
zi

Fi (xi , zi )

▶ to evaluate fi (xi ) and qi ∈ ∂fi (xi ) we solve an optimization
problem

Oracle-structured distributed optimization 8



Example: Supply chain

Source
Trans-

shipment
· · · Trans-

shipment
Sink

▶ single commodity network with M trans-shipment
components in series

▶ trans-shipment component i routes input flows ai ∈ Rmi
+ to

output flows bi ∈ Rni
+, with cost fi (ai , bi )

▶ flow is conserved: 1Tai = 1Tbi
▶ series connection means b1 = a2, . . . , bM−1 = aM
▶ source and sink costs ψsrc(a1) + ψsink(bM)
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Oracle-structured form

▶ xi = (ai , bi )

▶ fi (xi ) is minimum cost of trans-shipment problem with
quadratic edge cost, edge capacities

▶ solve trans-shipment problem with nimi private variables to
evaluate fi (xi ), qi ∈ ∂fi (xi )

▶ structured objective term is

g(x) = ψsrc((x1)1:m1) + ψsink((xM)mM+1:mN
) + I(x)

I(x) is indicator function of flow constraints
▶ roughly speaking:

▶ f1 + · · ·+ fM is the shipping cost
▶ g is the negative gross profit
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Agent objective minorants

▶ algorithm maintains a minorant f̂i : f̂i (x) ≤ fi (x) for all x

▶ at iteration k, query each agent i at x
(k+1)
i to get

fi (x
(k+1)
i ), q

(k+1)
i ∈ ∂fi (x

(k+1)

▶ update minorant of agent i

f̂
(k+1)
i (xi ) = max

(
f̂
(k)
i (xi ), fi (x

(k+1)
i ) + (q

(k+1)
i )T (xi − x

(k+1)
i )

)
▶ update minorant of h

ĥ(k+1)(x) = f̂
(k+1)
1 (x) + · · ·+ f̂

(k+1)
M (xM) + g(x)
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Bounds on optimal value

▶ L(k) = minx ĥ
(k)(x) is lower bound on optimal value

▶ U(k) = min{U(k−1), h(x (k))} is upper bound on optimal
value

▶ duality gap is U(k) − L(k)

▶ relative duality gap is

ω(k) =
U(k) − L(k)

min{|U(k)|, |L(k)|}

▶ stopping criterion is ω(k) ≤ ϵrel

▶ guarantees relative suboptimality less than ϵrel
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Proximal minorant algorithm

Algorithm

given x (0) ∈ dom h, h(x (0)), initial minorants f̂
(0)
i and stepsize ρ(0).

for k = 0, 1, . . .
1. Check stopping criterion.

2. Update iterate. x (k+1) = argminx

(
ĥ(k)(x) + (ρ(k)/2)∥x − x (k)∥22

)
.

3. Query agents. Evaluate fi (x
(k+1)
i ) and q

(k+1)
i ∈ ∂fi (x

(k+1)
i ).

4. Update minorants. Update f̂
(k+1)
i , i = 1, . . . ,M, and ĥ(k+1).

▶ several choices for inverse step sizes ρ(k) > 0
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Supply chain instance

▶ M = 5 trans-shipment components, with (mi , ni )

(20, 30), (30, 40), (40, 25), (25, 35), (35, 20)

▶ 300 variables; 4975 private variables

▶ proximal minorant algorithm ϵrel = 0.01
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Optimality gap (relative)
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