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Motivation
Global Autoregressive Models (GAMs) are a recent proposal [1] for ex-
ploiting global properties of sequences for sample-efficient learning of seq2seq
models. In the first phase of training, an Energy-Based model (EBM) over
sequences is derived. This EBM has higher representational power than a
standard autoregressive model, but is unnormalized and cannot be directly ex-
ploited for sampling. To address this issue [1] proposes a distillation technique,
which can only be applied under certain conditions. By relating this problem
to Policy Gradient techniques in RL, but in a distributional rather than op-
timization perspective, we propose an inference technique applicable
to any sequential EBM, beyond the initial GAM motivation.

Background: GAMs
A GAM [1] is an unnormalized potential (aka EBM) over sequences x:

Pη(x|C) = rη1(x|C) · e〈λη2 (C), φ(x;C)〉, η = η1 ⊕ η2.

The factor rη1(x|C) is an autoregressive model for generating x in the context
C. The factor e〈λη2 (C), φ(x;C)〉 is a log-linear potential. Normalized distribu-
tion: pη(x|C) =

Pη(x|C)

Zη(C)
, with Zη(C) =

∑
x Pη(x|C).

The features φ(x;C) provide prior knowledge to the model by drawing its
attention to potentially useful global sequence properties that may be difficult
for the autoregressive component to discover on its own.
Here, we focus on a simple unconditional (language modelling) version of
GAMs:

Pλ(x)
.
= r(x) · e〈λ, φ(x)〉 (1)

where the autoregressive factor r = rη1 is first learnt on the training dataset
of sequences D and then kept fixed, and where the parameter vector λ is then
trained on top of r, also on D. In general, if P is an EBM, we denote by p the
associated normalized distribution p(x) = 1

Z
P (x), with Z =

∑
x P (x). The

normalized distribution associated with Pλ(x) is denoted by pλ(x).

GAM training is done in two phases (see drawing). In
[1], we applied a distillation technique for Training-2,
but this supposed that we are able to sample from pλ, a
serious limitation. Here apply instead a distributional
variant of RL for Training-2, which does not have this
limitation, and is of general applicability to sampling
with EBMs.
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Distributional RL for EBMs
• Standard RL Policy Objective: maxθ Ex∼πθ(·) P (x)

(i.e. trying to find policy concentrated around maximum reward)

⇒ SGD (PG): Ex∼πθ(·) P (x)∇θ log πθ(x)
(Vanilla Policy Gradient - REINFORCE)

• Distributional RL Policya Objective: maxθ Ex∼p(·) log πθ(x)
(i.e. minθ CE(p, πθ): trying to find policy that best approximates reward
distribution)
⇒ SGD (Distillation): Ex∼p(·)∇θ log πθ(x)

(What we did in [1]. Issue: we need to be able to sample from p !!!)

⇒ SGD (DPGon): Ex∼πθ(·)
P (x)
πθ(x)

∇θ log πθ(x)
(A distributional variant of PG. We tried it, but unstable.)

⇒ SGD (DPGoff): Ex∼q(·) P (x)
q(x)
∇θ log πθ(x)

(Importance sampling with proposal q. More stable than DPGon. )

aFor a different view of Distributional RL see [3].
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Algorithm DPGoff

Algorithm 1 DPGoff

Input: P , initial policy q . in GAMs: P = Pλ and πθ0 = r
1: ← q
2: for each iteration do
3: for each episode do
4: sample x from q(·)
5: θ ← θ + α(θ) P (x)

q(x)
∇θ log πθ(x) . α(θ): learning rate

6: if πθ is superior to q then . in terms of validation perplexity
7: q ← πθ

Output: πθ

Case study: Motifs in Strings
true 101100010111110001000001001001
r 011111000010111110001110001011
πθ 111010100010111110000111111100
features [m,_,_, d0, d1, d2, d3]
λ’s [− 10.1,_,_,−0.15,−0.06, 0.0,−0.14]
moments true [0.0,_,_, 0.47, 0.99, 1.0, 0.91]
moments r [0.95,_,_, 0.53, 0.99, 1.0, 0.91]
moments πθ [0.0006,_,_, 0.43, 0.99, 0.99, 0.91]
cross entropy (CE) true: 0.45, r: 0.56, πθ: 0.47
motif freqs true: 1.0, r: 0.045, πθ: 0.959

Distillation vs. DPG
• Here, D consists of random binary

strings (of length 30), filtered by
the condition that they contain a
fixed motif 10001011111000

• Features: m (binary feature
m = 0 means motif is present),
d0, d1, d2, d3 are “distractor” bi-
nary features, with small corre-
lation with presence of motif (0
means feature is present).

• We vary D and observe CE (i.e.
perplexity) on test data (solid
lines), and also motif frequency
in samples from different models
(dotted lines).

• We compare results with
Training-2 done by Distillation
vs. DPGoff.

Results
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500 1.008 1.252 0.76 1.18 281.51

1000 1.014 1.102 0.762 1.178 240.40

5000 1.019 1.21 0.865 1.059 34.73

10000 1.014 1.067 0.968 1.023 2.17

20000 1.004 1.023 1.0 1.006 1.03

Discussion
Several recent works [1,4] have been stressing the representational power
and sample efficiency of Energy-Based Models in the context of sequence
generation. One delicate aspect of these models is the difficulty of
efficiently sampling from the EBM representation.

We have addressed this general problem here by connecting it to a
distributional variant of RL. Looking back at the specific situation of
GAMs, Training-2 can thus be viewed as a form of RL; it is interesting
to note that Training-1, by contrast, might be seen as a form of Inverse
RL: determining a reward (i.e. fitting an EBM) from the data itself,
rather than by external prescription.

In terms of importing standard RL approaches to the problem of sampling
from EBMs, our simple DPGoff technique only scratches the surface, and
further work could consider the adaptation of more sophisticated RL
techniques (e.g. actor-critic) in this context.


