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Low rank data

» in many applications data is organized in a matrix, 4 € R™*"
P gene expressions in cells

» in practice the data is often approximately low rank [Eckart+Young36,
Candés+Recht09, Udell+16]

Ay~ b, bi, ¢; € R”, r < min{m, n}

» per-cell coefficients and per-gene factors

Multilevel low rank matrices



Low rank matrix approximation

v

find B€ R™*" and C € R™" such that A ~ BCT

minimize ||A — BCT||% = Y7 (Ay; — bl ¢;)?

i,j=1
> storage compression from mn to (m+ n)r

> fast matrix-vector multiplication from mn flops to 2(m + n)r

» interpretable factors

» solved via the singular value decomposition (SVD), proposed in 1907 [Schmidt07]

Multilevel low rank matrices



Hierarchically structured data

biology: cells, tissues, organs
geography: cities, states, countries

>
>
» finance: industries, groups, sectors
» healthcare: patients, clinics, regions
>

education: students, classrooms, schools

Multilevel low rank matrices
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Contiguous multilevel low rank matrices

» an m x n contiguous multilevel low rank (MLR) matrix A with L levels

A=A+ ...+ A", Al = diag(A;1,. .., Arp)

» groups in partitions are contiguous ranges of row/column indices

Multilevel low rank matrices



Contiguous multilevel low rank matrices

» an m x n contiguous multilevel low rank (MLR) matrix A with L levels

Ak = BipCly,  Big € R™ () € R™HT

» groups in partitions are contiguous ranges of row/column indices

Multilevel low rank matrices



Two-matrix form

(a) factor form A = BCT

Multilevel low rank matrices

(b) compressed factor form
with (m + n)r coefficients, where
the MLR-rank of Ar=17r; +--- 4+ 7



Multilevel low rank matrices

» general m x n MLR matrix has the form

N

» P c R™ ™ is the row permutation matrix
» Q€ R™" is the column permutation matrix

» general hierarchical partition of the row and column index sets

Multilevel low rank matrices
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Multilevel low rank matrices

MLR matrix with MLR-rank r

» permutations P and @
» the number of levels L

» the block dimensions m;j;, and nyy, I=1,...,L, k=1,...

» the two matrices B and ('

» ranks ryst. i +---+rp =71

Multilevel low rank matrices
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Related work

» Hierarchical matrices
» H-matrix [Greengard+Rokhlin87,Hackbusch99]
> 7{2-matrix [Greengard+Rokhlin87,Hackbusch+Borm02, Darve00]
» hierarchically off-diagonal low-rank (HODLR) [Aminfar+4-16]
» hierarchical semiseparable (HSS) matrix [Chandrasekaran+06]
» block low rank matrices [Amestoy-+15]
» butterfly matrices [Parker95]
» Monarch matrices [Dao+22]

mazss
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Multilevel low rank matrices
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Example: Distance matrix

» distance matrix for Venice roadmap
» n = 5893 nodes and 12098 edges

» [ = 14 levels and MLR-rank = 98
» compression ratio 30 : 1

Method  Error (%)

Storage (x10°)

LR 0.72
LR+D 0.71
HODLR 2.50
Monarch 0.87
MLR 0.37

Multilevel low rank matrices

5.78
5.78
5.79
5.88
5.78
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Properties of MLR matrices

» matrix-vector multiply in 2(m + n)r flops vs mn in the dense case
» linear system solve

> via recursive Sherman-Morrison-Woodbury in O(nr?) vs O(n?) in the dense case
» via direct sparse solver

» [ largest eigenvalues, total cost at iteration &

> Arnoldi iteration with O(nrk + nk?) vs O(n?k+ nk?) dense case
> Lanczos algorithm with O(nrk 4 nk) vs O(n*k+ nk) dense case

Multilevel low rank matrices
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Example: Linear system solve
» solve Az =10
> A PD MLR matrix, with n = 10° and compression ratio 750 : 1
» dense matrix in single precision requires 37Gb

» direct dense solve using Cholesky

> extrapolated time (from 10s for 10* x 10* matrix) is 2.7h on M2 chip
» recursive SMW

» solve in 200ms on M2 chip: x50000 faster than the dense one

Multilevel low rank matrices 14



Fitting problems

i BLreb
+ + I—+
I—

» how to fit the factors?
» how to allocate ranks across levels?
» how to choose hierarchical partition?

Multilevel low rank matrices

QT
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Summary of contributions

MLR matrices are natural extensions for low rank matrices
fast linear algebra and storage compression

Frobenius norm and MLE-based fitting methods

model general hierarchical structures

identify factors explaining data at global and local scales

applications to real-world distance matrices, asset covariance matrices, kernel matrices

vVvvyVvyVvVyVyvyy

open-source packages
» mlrfit: https://github.com/cvxgrp/mlr_fitting
» mfmodel: https://github.com/cvxgrp/multilevel _factor_model

Multilevel low rank matrices
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https://github.com/cvxgrp/mlr_fitting
https://github.com/cvxgrp/multilevel_factor_model

Future directions

» compress NNs by replacing dense layers with MLR

» |earning graph structure

P single-cell gene expression datasets: genes x cells
> bacterial /metagenomic datasets: microbial features x samples

» scalable fitting methods for latent variable graphical models
» build on ideas from chordal embedding and randomized graph sparsification
> iterative graph neural network (GNN) integration

» use the conditional independence graph to guide GNNs, updating the graph as new
embeddings emerge

Multilevel low rank matrices
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Distributed convex optimization problem

minimize  f(z)
subject to z € R(ET)

» f: R™ — RU {oo} is closed, convex, and proper
» nnets Ny,..., N, forming a partition of {1,..., m}
> Ec R™™is a selection matrix

g _ [+l ifjEN,
Y10 otherwise

Optimization algorithm design via electric circuits
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Example: Consensus problem

minimize . filz) + -+ fn(zy)

11,...,1N€Rm/
subject to L=+ =IN
» 2= (21,...,2y) € R™ is the decision variable

> flx) = fi(z1) + -+ + fn(zn) is block-separable
> BT =(I,...,I)e R™™/N

Optimization algorithm design via electric circuits
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Circuit interpretation: KKT conditions

y € Of(x) (stationarity)
z € R(ET) (primal feasibility)
y € N(E) (dual feasibility)

Optimization algorithm design via electric circuits
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Circuit interpretation: KKT conditions

y € Of(x) (nonlinear resistor)
z € R(ET) (KVL)
y € N(E) (KCL)

Optimization algorithm design via electric circuits

Static interconnect
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Circuit interpretation: Dynamic interconnect

Dynamic interconnect

o = a2 oo
Ait) = [_%(t)] (KCL) Eﬁj |
vr(t) = Dgrir(t) (resistor

vcit; - D.cjtjc)(t)((inducior) H}HI
ic(t) = Dc%Uc(t) (capacitor) —L—

Optimization algorithm design via electric circuits
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Circuits for classical algorithms: DRS

» V-I| relations

T = proxp,(m + Rig)
Ty = proxp(m — Ric) dg of
d
a = g T =
A A

» Douglas—Rachford splitting

i i) —H—rm—u T2
(= prosg(d + ki)

R
II;H = profo( — Ri%) «— ANAN
o1 o 3
it o= i+ L( e

Optimization algorithm design via electric circuits
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Circuits for classical algorithms: Nesterov acceleration
» V-I relations

dﬂig = Dzl(vc—$+)
d —1
zc = —D; Vf(z).
» Nesterov acceleration
d?
e

2B+ Ve TV + (14 V) V) = 0

Optimization algorithm design via electric circuits
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Circuits for classical algorithms: Proximal gradient

VRg

» V-| relations Vf
ic = —Vflz)—Vigle) m
ve = z— RVf(z)
» Proximal gradient method o ,P;
LR prox (I — RV () *RC—_

Optimization algorithm design via electric circuits
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Circuits for classical algorithms: DADMM

» V-| relations

zj PTOX ) |1))s; <1" 2 (Ricy+ e]l)>
I€T;
1
ey = a(ﬂfj + ;) of; af;
d . 1 , ,
Eﬁl £l — z ( eji — iEj) ,{m ,{m

» Decentralized ADMM 5

il iy
z; = ProX(g/|r;\)f \F ‘ Z R’L£ﬂ+ e

1 €jt
1 41 1

g = @t

. k+1 -k k+1 k 1

zﬁjfL = gyt 7(6 - * )

Optimization algorithm design via electric circuits 26



Circuits for classical algorithms: PG-EXTRA

» V-| relations

N
ProXpy, (Z Wixy — RVhy(zj) — wj)

=
=1
d N
ij = T;— Z Wiz
t =1
» PG-EXTRA
2 = ProXps (ka — RVA(a") — wk)
. 1 .
Wttt = WF 4 5(]— wW)z"

Optimization algorithm design via electric circuits

o
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Energy dissipation

in continuous time, energy dissipation leads to convergence (Thm 2.2, [Boyd+2024])
E(t) = zllve(®) = D + 3llic(t) — I,
w€ < —(at) = y() —y') <0

lim;, o0 2(t) = o

vvyyvyy

» not every discretization leads to a convergent algorithm

Optimization algorithm design via electric circuits
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Automatic discretization

find discretization preserving the proof structure (Lemma 4.1, [Boyd+2024])
Ex = glle — &lD, + 3l — 1D,

Eps1 — Ex +n(a¥ — 27,y — y*) <0 for some n > 0

Yl (# =2ty - ) <00

limp_ oo 2 = 2*

vVvyYVYyyvyy

» automate using computer-assisted proof framework PEP
» open-source package ciropt:
https://github.com/cvxgrp/optimization_via_circuits

Optimization algorithm design via electric circuits

29


https://github.com/cvxgrp/optimization_via_circuits

Existing discretization

previous discretization studies divide into two categories

> apply standard discretization schemes or their variants [Runge+1895; Kutta+1901]

> focus on the convergence of the discretized sequence to the solution trajectory in [0, 7]
» not our interest, fails when T — oo [lIserles2009]

» special rules tailored to the specific dynamics [Alvarez+2001; Su+2016;
Wibisono+2016; Attouch+2019; Wilson+2019]

» strategy cannot work in general

we provide a novel discretization methodology

» aim to find parameters that preserve the proof structure

» find such parameters automatically by leveraging PEP

Optimization algorithm design via electric circuits
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Numerical results: DADMM+C

KN
A
3
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A)
3

Optimization algorithm design via electric circuits
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Summary of contributions

» introduce a framework for designing optimization algorithms via RLC circuits

» design dynamic circuit that converges to the solution
> discretize to obtain convergent algorithm

» electric circuits for standard methods

» Nesterov acceleration, proximal point method, prox-gradient, primal decomposition, dual
decomposition, DYS, DRS, decentralized gradient descent, diffusion, DADMM and
PG-EXTRA

» convergence proof of circuit dynamics based on energy dissipation
» PEP-based automated discretization that preserves proof structure

» open-source package ciropt:
https://github.com/cvxgrp/optimization_via_circuits

Optimization algorithm design via electric circuits
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https://github.com/cvxgrp/optimization_via_circuits

Future directions

» extending the framework for stochastic programming
» extracting convergence rates
> energy dissipation over multiple steps
» include methods with time dependent step sizes
» using time dependent electric components
» key question: how to automate the development of accelerated algorithms?

» search over admissible circuit designs
» find circuits which result in fast relaxation, e.g., critical damping
» guidance on how to design fast optimization method from circuit architecture

Optimization algorithm design via electric circuits
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T. Parshakova, F. Zhang, and S. Boyd. (2023). r
Implementation of an oracle-structured bundle method for distributed

Optimization and Engineering, 1-34. Springer.

T. Parshakova, Y. Bai, G. van Ryzin, S. Boyd. (2025).
Price directed distributed optimization. In preparation.
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Oracle-structured distributed optimization problem

minimize h(z) = f(z) + g(z)

» 1= (21,...,2p) € R" is variable, z; € R™

> fla) = Zf\ilﬁ(:@) is block separable

> f; convex, accessed by value/subgradient oracle

> ¢g:R" — RU{oo} is convex structured objective function

» coordinator can solve an optimization problem involving g

Generic methods for distributed optimization
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Our goals

classical setting | our setting

agents easy to query ‘ agents costly to query

coordinator performs simple | coordinator can do more than
operations (e.g., averaging) average

we are interested in methods that

» find good points in tens of iterations or fewer
» have zero hyper-parameters to tune

» handle agent delays and failures

Generic methods for distributed optimization
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Methods

v

(accelerated) proximal subgradient
ADMM, Douglas-Rachford
cutting plane/bundle methods

vy

> we've settled on cutting-plane/bundle methods

v

these methods build up a piecewise linear model of each f;

Generic methods for distributed optimization
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Agent objective minorants

> algorithm maintains a minorant f;: fi(z) < fi(z) for all z
» at iteration k, query each agent 7 at xE.kH) to get
D), Y e onat)
» update minorant of agent i
J ) = mave (00 ), ) 4 () T -
» update minorant of A

A (z) = FED (2) + - 4 15D () + g(a)

Generic methods for distributed optimization

k+1
#))
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Proximal minorant algorithm

Algorithm

given (9 € dom h, h((?)), initial minorants }20) and stepsize p(®).

for k=0,1,...

Check stopping criterion.

Update iterate. z(b+1) = argmin,, (ﬁ(k)( x) + (p(}C /2) ||z — x<k>||%)
Query agents. Evaluate fi(z<k+1)) and q(k+1) € ofi( <k+1))
Update minorants. Update }Ek+1), i=1,..., M, and plk+1)

B ow N e

> relative duality gap with L) = min, h* (z), U® = min{ U+~1)

k
*® Uk —

= min{[ U], L]}

w

Generic methods for distributed optimization

, h(aM)},
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Numerical results: Optimality gap (relative)

Trans-
shipment

Source

Trans-
shipment

Sink

102
101 4
10° 4
1071 4
1072 4

1073 4

Generic methods for distributed optimization

T
100
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Summary of contributions

» assemble several methods into a single algorithm

> disaggregate partially exact bundle method
» diagonal preconditioning
» |evel bundle methods

» zero hyper-parameters to tune
» handle agent delays and failures

» works well on wide range of practical problems
» achieves 1% accuracy in tens of iterations

» open-source package 0SBDO: https://github.com/cvxgrp/0SBDO

Generic methods for distributed optimization
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https://github.com/cvxgrp/OSBDO

Future directions

setting: substantial computational cost per agent

» develop postprocessing method

» uses low-precision optimal dual variable
» recovers close to feasible primal point
P uses only parallel calls to agents; avoids sequential calls

» recover near-feasible point with tolerable suboptimality using parallel agent calls

» combining first-order methods with localization methods
» faster ADMM with analytic centers

Generic methods for distributed optimization
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Future directions

» compress NNs by replacing dense layers with MLR
» learning graph structure from data

» automating the development of accelerated algorithms

» search over admissible circuit designs
» find circuits which result in fast relaxation, e.g., critical damping

» recover near-feasible point with tolerable suboptimality using parallel agent calls

» combining first-order methods with localization methods

Generic methods for distributed optimization 44



Generic methods for distributed optimization

Thanks!
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Factor form

> arrange factors such that 4 = BCT

Appendix
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Compressed form

B Cia

> B=| ¢ |eRm =] : |eR™
Blmz Cl’pl

> B:[Bl BL]ERer’ C:[Cl

» r=r7r; + -+ g is the MLR-rank of 4

i B

Appendix
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Example: Linear system solve

solve Az = b with A positive definite MLR matrix

n=10°

dense matrix in single precision requires 37Gb

hierarchical partition py = 1, py = 3, p3 = 7, ps = 16, p5 = 10°
ranks 11 = 30, i, =20, 13 =10, 74, =5, s, =1

vVvyVvyVvVvyyvyy

compression ratio 750 : 1

Appendix
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Example: Linear system solve

» direct dense solve using Cholesky

> extrapolated time (from 10s for 10* x 10* matrix) is 2.7h on M2 chip
» recursive SMW

» solve in 200ms on M2 chip

» MLR solve is x50000 faster than the dense one

Appendix
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Example: Discrete Gauss transform matrix

» AZJ = e_”ti_sj”g/hQ and e tl c Rd
» m = 5000, n="T7000, r=28, L=14, d=3, and h=0.2
» compression ratio 100 : 1

Method Error (%) Storage (x10%)

LR 41.8 3.36

HODLR 72.5 3.39 5
Monarch 44.0 3.60 :
MLR bottom 16.8 3.36
MLR uniform 21.8 3.36

MLR top 25.8 3.36

rank allocation

Appendix



PSD MLR

> symmetric positive semidefinite (PSD) MLR matrices

» each block A, = BB} is PSD

» PSD MLR is a covariance matrix in multilevel factor model (MFM) [Aitkin+81]
Ss=[F DV>|[F DV2]"=FF"+D

Appendix
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Factor fitting

» fix hierarchical partition and rank allocation
> optimize |[PTAQ — A(B, 0)||% over the factors B and C

(a) alternating least squares (b) block coordinate descent

Appendix 51



Rank allocation

» fix hierarchical partition

» optimize over the factors B and C'and ranks ry,...,rpst. mm+---+rp =1

rank exchange algorithm

R=P"AQ- blkdiag(B;1C},, ..., B, C} )

J:Pj ~j,pj
AL

+ + '_ ot \\
I =

Appendix 52




Hierarchy fitting: Nested spectral dissection
1. Ry =(A-B,CL))
2. Ry =PIR @

> permutations PY, QI maximize the sum of squares of residuals within the two diagonal
blocks

_— By 1CT, 0
3. R2 — R1 - O B2’2 02'1:2

4. ...

Appendix
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Multilevel factor model

y=Fz+e

> Fc R™ is structured factor loading matrix
> 2 € R’ are factor scores, with 2z ~ N(0, I)
> e c R" are unique terms, with e ~ N(0, D)

Appendix
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Efficient computation

» computation of MLR ¥ 7!

> time complexity O(n7® 4 Pr—1Tmax’")
P extra memory used is 3nr+ 2pr—1TmaxT

» EM iteration
> time complexity O(pr—1m1° + n1° + pr—1nrN + pr—17Tmax"”)

Appendix
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Example: Asset covariance matrix

» n=>5000, L =6, N= 300, and r= 30
» compression ratio 80 : 1

> log-likelihood for factor model (left) and multilevel factor model (right)

1.22 x 10*
—— MLE — MLE
—— Frob —— Frob
1.21 x 10*
< . z
;\ 1.2 x 10 g:
8 S
& 119 x 101 r =)
< B
1.18 x 10* /
0 20 40 60 80 100 0 20 40 60 80 100
iteration iteration

Appendix
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Example: Synthetic multilevel factor model

» n = 10000, L =6, r=25, s= 174, SNR of 4
» compression ratio 200 : 1
» histograms over 100 runs each with sample size 200

Appendix
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|
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i
i
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Automatic discretization: PEP

for given discretization («, 8, k), and n > 0, dissipativity can be checked by

maximize & — & +n(a' —2*, yt — y*)
. 1 : 10 s
subject to & = gllvg — illh. + 5lli: — gD, se{1,2}
(o', o', y') is feasible initial point
(v?, i, 2%, %) is generated by discrete optimization method from initial point
feF

> f ol il ot gyt vF, 7, 2%, y* are the decision variables

» F is a family of functions (e.g., L-smooth convex)

Appendix
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Agents

» when queried by coordinator at x;, agent returns
i), q: € Ofi(x)
» agents can include private variables z;, with

Zi

> to evaluate f;(z;) and ¢; € Jf;(xz;) we solve an optimization problem

Appendix
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Example: Supply chain

Trans- Trans- .
Source [—>| , . — s — > Sink
shipment shipment

single commodity network with M trans-shipment components in series
component i routes flows a; € R to flows b; € R, with cost f;(a;, b;)
flow is conserved: 17a;, =17Tb;

source and sink costs ¥ (ay ) + 15K (byy)

our instance

» M =5 with (ms n;): (20,30), (30,40), (40,25), (25,35), (35,20)
> 300 variables; 4975 private variables

vvyvyyVvVyy

Appendix
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