
Design and Analysis of Efficient Algorithms for Large-Scale
Problems

Tetiana Parshakova

Flatiron Institute

1/6/25

Research directions

Efficient methods for
large-scale problems

Leveraging structure
scalable methods that

exploit sparsity, low rank, etc

Accelerated schemes
unified framework for
accelerated methods
via electric circuits

Distributed optimization
efficient solvers for distri-

buted optimization problems

2

Efficient methods for
large-scale problems

Leveraging structure
scalable methods that

exploit sparsity, low rank, etc

Accelerated schemes
unified framework for
accelerated methods
via electric circuits

Distributed optimization
efficient solvers for distri-

buted optimization problems

Reference:
T. Parshakova, T. Hastie, E. Darve, and S. Boyd. (2024).

Factor fitting, rank allocation, and partition in multilevel low rank matrices.
To appear in Optimization, Discrete Mathematics, and Applications to

Data Sciences. Springer.

T. Parshakova, T. Hastie, and S. Boyd. (2024).
Fitting multilevel factor models. Submitted.

3

Low rank data

▶ in many applications data is organized in a matrix, A ∈ Rm×n

▶ gene expressions in cells
▶ in practice the data is often approximately low rank [Eckart+Young36,

Candès+Recht09, Udell+16]

Aij ≈ bT
i cj, bi, cj ∈ Rr, r ≪ min{m,n}

▶ per-cell coefficients and per-gene factors

Multilevel low rank matrices 4

Low rank matrix approximation

=

▶ find B ∈ Rm×r and C ∈ Rn×r such that A ≈ BCT

minimize ∥A − BCT∥2
F =

∑m,n
i,j=1(Aij − bT

i cj)
2

▶ storage compression from mn to (m + n)r
▶ fast matrix-vector multiplication from mn flops to 2(m + n)r
▶ interpretable factors
▶ solved via the singular value decomposition (SVD), proposed in 1907 [Schmidt07]

Multilevel low rank matrices 5

Hierarchically structured data

▶ biology: cells, tissues, organs
▶ geography: cities, states, countries
▶ finance: industries, groups, sectors
▶ healthcare: patients, clinics, regions
▶ education: students, classrooms, schools

Multilevel low rank matrices 6

Contiguous multilevel low rank matrices

▶ an m × n contiguous multilevel low rank (MLR) matrix A with L levels

+ + + +...

A = A1 + · · ·+ AL, Al = diag(Al,1, . . . ,Al,pl)

▶ groups in partitions are contiguous ranges of row/column indices

Multilevel low rank matrices 7

Contiguous multilevel low rank matrices

▶ an m × n contiguous multilevel low rank (MLR) matrix A with L levels

+ + + +...

Al,k = Bl,kCT
l,k, Bl,k ∈ Rml,k×rl , Cl,k ∈ Rnl,k×rl

▶ groups in partitions are contiguous ranges of row/column indices

Multilevel low rank matrices 7

Two-matrix form

... ...

(a) factor form A = B̃C̃T

(b) compressed factor form
with (m + n)r coefficients, where
the MLR-rank of A r = r1 + · · ·+ rL

Multilevel low rank matrices 8

Multilevel low rank matrices

▶ general m × n MLR matrix has the form

P

 + + + +...

QT

▶ P ∈ Rm×m is the row permutation matrix
▶ Q ∈ Rn×n is the column permutation matrix

▶ general hierarchical partition of the row and column index sets

Multilevel low rank matrices 9

Multilevel low rank matrices

MLR matrix with MLR-rank r

▶ permutations P and Q
▶ the number of levels L
▶ the block dimensions ml,k and nl,k, l = 1, . . . ,L, k = 1, . . . , pl
▶ the two matrices B and C
▶ ranks ri s.t. r1 + · · ·+ rL = r

Multilevel low rank matrices 10

Related work
▶ Hierarchical matrices

▶ H-matrix [Greengard+Rokhlin87,Hackbusch99]
▶ H2-matrix [Greengard+Rokhlin87,Hackbusch+Borm02, Darve00]
▶ hierarchically off-diagonal low-rank (HODLR) [Aminfar+16]
▶ hierarchical semiseparable (HSS) matrix [Chandrasekaran+06]

▶ block low rank matrices [Amestoy+15]
▶ butterfly matrices [Parker95]

▶ Monarch matrices [Dao+22]

x x x

Multilevel low rank matrices 11

Example: Distance matrix

▶ distance matrix for Venice roadmap
▶ n = 5893 nodes and 12098 edges
▶ L = 14 levels and MLR-rank r = 98
▶ compression ratio 30 : 1

Method Error (%) Storage (×105)

LR 0.72 5.78
LR+D 0.71 5.78
HODLR 2.50 5.79
Monarch 0.87 5.88
MLR 0.37 5.78

Multilevel low rank matrices 12

Properties of MLR matrices

▶ matrix-vector multiply in 2(m + n)r flops vs mn in the dense case
▶ linear system solve

▶ via recursive Sherman-Morrison-Woodbury in O(nr2) vs O(n3) in the dense case
▶ via direct sparse solver

▶ k largest eigenvalues, total cost at iteration k
▶ Arnoldi iteration with O(nrk + nk2) vs O(n2k + nk2) dense case
▶ Lanczos algorithm with O(nrk + nk) vs O(n2k + nk) dense case

Multilevel low rank matrices 13

Example: Linear system solve
▶ solve Ax = b

▶ A PD MLR matrix, with n = 105 and compression ratio 750 : 1
▶ dense matrix in single precision requires 37Gb

▶ direct dense solve using Cholesky
▶ extrapolated time (from 10s for 104 × 104 matrix) is 2.7h on M2 chip

▶ recursive SMW
▶ solve in 200ms on M2 chip: ×50000 faster than the dense one

Multilevel low rank matrices 14

Fitting problems

P

 + + + +...

QT

▶ how to fit the factors?
▶ how to allocate ranks across levels?
▶ how to choose hierarchical partition?

Multilevel low rank matrices 15

Summary of contributions

▶ MLR matrices are natural extensions for low rank matrices
▶ fast linear algebra and storage compression
▶ Frobenius norm and MLE-based fitting methods
▶ model general hierarchical structures
▶ identify factors explaining data at global and local scales
▶ applications to real-world distance matrices, asset covariance matrices, kernel matrices
▶ open-source packages

▶ mlrfit: https://github.com/cvxgrp/mlr_fitting
▶ mfmodel: https://github.com/cvxgrp/multilevel_factor_model

Multilevel low rank matrices 16

https://github.com/cvxgrp/mlr_fitting
https://github.com/cvxgrp/multilevel_factor_model

Future directions

▶ compress NNs by replacing dense layers with MLR

▶ learning graph structure
▶ single-cell gene expression datasets: genes x cells
▶ bacterial/metagenomic datasets: microbial features x samples

▶ scalable fitting methods for latent variable graphical models
▶ build on ideas from chordal embedding and randomized graph sparsification

▶ iterative graph neural network (GNN) integration
▶ use the conditional independence graph to guide GNNs, updating the graph as new

embeddings emerge

Multilevel low rank matrices 17

Efficient methods for
large-scale problems

Leveraging structure
scalable methods that

exploit sparsity, low rank, etc

Accelerated schemes
unified framework for
accelerated methods
via electric circuits

Distributed optimization
efficient solvers for distri-

buted optimization problems

Reference:
S. Boyd, T. Parshakova, E. Ryu, and J. Suh. (2024).

Optimization algorithm design via electric circuits.
Accepted (Spotlight) to Conference on
Neural Information Processing System.

18

Distributed convex optimization problem

minimize f(x)
subject to x ∈ R(E⊺)

▶ f : Rm → R ∪ {∞} is closed, convex, and proper
▶ n nets N1, . . . ,Nn forming a partition of {1, . . . ,m}
▶ E ∈ Rn×m is a selection matrix

Eij =

{
+1 if j ∈ Ni
0 otherwise

Optimization algorithm design via electric circuits 19

Example: Consensus problem

minimize
x1,...,xN∈Rm/N

f1(x1) + · · ·+ fN(xN)

subject to x1 = · · · = xN

▶ x = (x1, . . . , xN) ∈ Rm is the decision variable
▶ f(x) = f1(x1) + · · ·+ fN(xN) is block-separable
▶ E⊺ = (I, . . . , I) ∈ Rm×m/N

Optimization algorithm design via electric circuits 20

Circuit interpretation: KKT conditions

y ∈ ∂f(x) (stationarity)
x ∈ R(E⊺) (primal feasibility)
y ∈ N (E) (dual feasibility)

∂f
y⋆5

y⋆4

y⋆3

y⋆2

y⋆1 x⋆1
x⋆2
x⋆3
x⋆4
x⋆5

Static interconnect

Optimization algorithm design via electric circuits 21

Circuit interpretation: KKT conditions

y ∈ ∂f(x) (nonlinear resistor)
x ∈ R(E⊺) (KVL)
y ∈ N (E) (KCL)

∂f
y⋆5

y⋆4

y⋆3

y⋆2

y⋆1 x⋆1
x⋆2
x⋆3
x⋆4
x⋆5

Static interconnect

Optimization algorithm design via electric circuits 21

Circuit interpretation: Dynamic interconnect

y(t) ∈ ∂f(x(t)) (nonlinear resistor)

v(t) = A⊺
[
x(t)
e(t)

]
(KVL)

Ai(t) =

[
−y(t)

0

]
(KCL)

vR(t) = DRiR(t) (resistor)

vL(t) = DL
d
dt iL(t) (inductor)

iC(t) = DC
d
dtvC(t) (capacitor)

Dynamic interconnect

∂f
y5(t)

y4(t)

y3(t)

y2(t)

y1(t) x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

Optimization algorithm design via electric circuits 22

Circuits for classical algorithms: DRS

▶ V-I relations

x1 = proxRg(x2 + RiL)
x2 = proxRf(x1 − RiL)

d
dt iL =

1
L (x2 − x1)

▶ Douglas–Rachford splitting

xk+1
1 = proxRg(xk

2 + RikL)
xk+1

2 = proxRf(xk+1
1 − RikL)

ik+1
L = ikL +

h
L (xk+1

2 − xk+1
1)

L

R

m m

∂g ∂f

x1 x2

Optimization algorithm design via electric circuits 23

Circuits for classical algorithms: Nesterov acceleration
▶ V-I relations

d
dt iL = D−1

L (vC − x+)

d
dtvC = −D−1

C ∇f(x).

▶ Nesterov acceleration
d2

dt2 x + 2√µ d
dtx +

√
s d
dt∇f(x) + (1 +

√
µs)∇f(x) = 0

∇f
C

R

L

−R m
e x+ x

Optimization algorithm design via electric circuits 24

Circuits for classical algorithms: Proximal gradient

▶ V-I relations

iC = −∇f(x)−∇Rg(e)
vC = x − R∇f(x)

▶ Proximal gradient method

xk+1 = proxRg(I − R∇f)(xk) C
−R

m m

∇f ∇Rg

x
e

Optimization algorithm design via electric circuits 25

Circuits for classical algorithms: DADMM
▶ V-I relations

xj = prox(R/|Γj|)fj

 1
|Γj|

∑
l∈Γj

(RiLjl + ejl)


ejl =

1
2
(xj + xl)

d
dt

iLjl =
1
L
(ejl − xj)

▶ Decentralized ADMM

xk+1
j = prox(R/|Γj|)fj

 1
|Γj|

∑
l∈Γj

(RikLjl + ek
jl)


ek+1

jl =
1
2
(xk+1

j + xk+1
l)

iLk+1
jl = iLk

jl +
1
R
(ek+1

jl − xk+1
j)

R R R RL LL

iLjl

L

iLlj

ejl

· · · · · ·

m m

xj xl

∂fj ∂fl

Optimization algorithm design via electric circuits 26

Circuits for classical algorithms: PG-EXTRA

▶ V-I relations

xj = proxRfj

(N∑
l=1

Wjlxl − R∇hj(xj)− wj

)

d
dt

wj = xj −
N∑

l=1
Wjlxl

▶ PG-EXTRA
xk+1 = proxRf

(
Wxk − R∇h(xk)− wk

)
wk+1 = wk +

1
2
(I − W)xk

m ∇hl∂fl
x̃l

R

el

−R

xl

m ∇hj∂fj x̃j R
ej −R

xj

RjlLjl

Optimization algorithm design via electric circuits 27

Energy dissipation

▶ in continuous time, energy dissipation leads to convergence (Thm 2.2, [Boyd+2024])
▶ E(t) = 1

2∥vC(t)− v⋆C∥2
DC

+ 1
2∥iL(t)− i⋆L∥2

DL

▶ d
dtE ≤ −⟨x(t)− x⋆, y(t)− y⋆⟩ ≤ 0

▶ limt→∞ x(t) = x⋆

▶ not every discretization leads to a convergent algorithm

Optimization algorithm design via electric circuits 28

Automatic discretization

▶ find discretization preserving the proof structure (Lemma 4.1, [Boyd+2024])
▶ Ek = 1

2∥vk
C − v⋆C∥2

DC
+ 1

2∥ikL − i⋆L∥2
DL

▶ Ek+1 − Ek + η⟨xk − x⋆, yk − y⋆⟩ ≤ 0 for some η > 0
▶ ∑∞

k=1⟨xk − x⋆, yk − y⋆⟩ <∞
▶ limk→∞ xk = x⋆

▶ automate using computer-assisted proof framework PEP
▶ open-source package ciropt:

https://github.com/cvxgrp/optimization_via_circuits

Optimization algorithm design via electric circuits 29

https://github.com/cvxgrp/optimization_via_circuits

Existing discretization

previous discretization studies divide into two categories
▶ apply standard discretization schemes or their variants [Runge+1895; Kutta+1901]

▶ focus on the convergence of the discretized sequence to the solution trajectory in [0,T]
▶ not our interest, fails when T → ∞ [Iserles2009]

▶ special rules tailored to the specific dynamics [Alvarez+2001; Su+2016;
Wibisono+2016; Attouch+2019; Wilson+2019]
▶ strategy cannot work in general

we provide a novel discretization methodology
▶ aim to find parameters that preserve the proof structure
▶ find such parameters automatically by leveraging PEP

Optimization algorithm design via electric circuits 30

Numerical results: DADMM+C

· · · R RL

iL45

L

iL54

e45

C

x5

m m

x4

∂f4 ∂f5

0 20 40 60 80 100

Iteration count k

10−10

10−8

10−6

10−4

10−2

100

|f
(x
k
)
−
f
?
|/f

?

P-EXTRA

DADMM

Circuit DADMM+C

Optimization algorithm design via electric circuits 31

Summary of contributions

▶ introduce a framework for designing optimization algorithms via RLC circuits
▶ design dynamic circuit that converges to the solution
▶ discretize to obtain convergent algorithm

▶ electric circuits for standard methods
▶ Nesterov acceleration, proximal point method, prox-gradient, primal decomposition, dual

decomposition, DYS, DRS, decentralized gradient descent, diffusion, DADMM and
PG-EXTRA

▶ convergence proof of circuit dynamics based on energy dissipation
▶ PEP-based automated discretization that preserves proof structure

▶ open-source package ciropt:
https://github.com/cvxgrp/optimization_via_circuits

Optimization algorithm design via electric circuits 32

https://github.com/cvxgrp/optimization_via_circuits

Future directions

▶ extending the framework for stochastic programming
▶ extracting convergence rates

▶ energy dissipation over multiple steps
▶ include methods with time dependent step sizes

▶ using time dependent electric components
▶ key question: how to automate the development of accelerated algorithms?

▶ search over admissible circuit designs
▶ find circuits which result in fast relaxation, e.g., critical damping
▶ guidance on how to design fast optimization method from circuit architecture

Optimization algorithm design via electric circuits 33

Efficient methods for
large-scale problems

Leveraging structure
scalable methods that

exploit sparsity, low rank, etc

Accelerated schemes
unified framework for
accelerated methods
via electric circuits

Distributed optimization
efficient solvers for distri-

buted optimization problems

Reference:
T. Parshakova, F. Zhang, and S. Boyd. (2023).

Implementation of an oracle-structured bundle method for distributed
optimization.

Optimization and Engineering, 1–34. Springer.

T. Parshakova, Y. Bai, G. van Ryzin, S. Boyd. (2025).
Price directed distributed optimization. In preparation.

34

Oracle-structured distributed optimization problem

minimize h(x) = f(x) + g(x)

▶ x = (x1, . . . , xM) ∈ Rn is variable, xi ∈ Rni

▶ f(x) =
∑M

i=1 fi(xi) is block separable
▶ fi convex, accessed by value/subgradient oracle
▶ g : Rn → R ∪ {∞} is convex structured objective function
▶ coordinator can solve an optimization problem involving g

Generic methods for distributed optimization 35

Our goals

classical setting our setting
agents easy to query agents costly to query
coordinator performs simple
operations (e.g., averaging)

coordinator can do more than
average

we are interested in methods that
▶ find good points in tens of iterations or fewer
▶ have zero hyper-parameters to tune
▶ handle agent delays and failures

Generic methods for distributed optimization 36

Methods

▶ (accelerated) proximal subgradient
▶ ADMM, Douglas-Rachford
▶ cutting plane/bundle methods

▶ we’ve settled on cutting-plane/bundle methods
▶ these methods build up a piecewise linear model of each fi

Generic methods for distributed optimization 37

Agent objective minorants

▶ algorithm maintains a minorant f̂i: f̂i(x) ≤ fi(x) for all x
▶ at iteration k, query each agent i at x(k+1)

i to get

fi(x(k+1)
i), q(k+1)

i ∈ ∂fi(x(k+1))

▶ update minorant of agent i

f̂(k+1)
i (xi) = max

(̂
f(k)i (xi), fi(x(k+1)

i) + (q(k+1)
i)T(xi − x(k+1)

i)
)

▶ update minorant of h

ĥ(k+1)(x) = f̂(k+1)
1 (x) + · · ·+ f̂(k+1)

M (xM) + g(x)

Generic methods for distributed optimization 38

Proximal minorant algorithm

Algorithm
given x(0) ∈ dom h, h(x(0)), initial minorants f̂(0)

i and stepsize ρ(0).
for k = 0, 1, . . .

1. Check stopping criterion.
2. Update iterate. x(k+1) = argminx

(
ĥ(k)(x) + (ρ(k)/2)∥x − x(k)∥2

2

)
.

3. Query agents. Evaluate fi(x(k+1)
i) and q(k+1)

i ∈ ∂fi(x(k+1)
i).

4. Update minorants. Update f̂(k+1)
i , i = 1, . . . ,M, and ĥ(k+1).

▶ relative duality gap with L(k) = minx ĥ(k)(x), U(k) = min{U(k−1), h(x(k))},

ω(k) =
U(k) − L(k)

min{|U(k)|, |L(k)|}

Generic methods for distributed optimization 39

Numerical results: Optimality gap (relative)

Source Trans-
shipment · · · Trans-

shipment Sink

0 20 40 60 80 100
k

10 5

10 4

10 3

10 2

10 1

100

101

102
(k)
true
(k)

Generic methods for distributed optimization 40

Summary of contributions

▶ assemble several methods into a single algorithm
▶ disaggregate partially exact bundle method
▶ diagonal preconditioning
▶ level bundle methods

▶ zero hyper-parameters to tune
▶ handle agent delays and failures
▶ works well on wide range of practical problems

▶ achieves 1% accuracy in tens of iterations
▶ open-source package OSBDO: https://github.com/cvxgrp/OSBDO

Generic methods for distributed optimization 41

https://github.com/cvxgrp/OSBDO

Future directions

setting: substantial computational cost per agent

▶ develop postprocessing method
▶ uses low-precision optimal dual variable
▶ recovers close to feasible primal point
▶ uses only parallel calls to agents; avoids sequential calls

▶ recover near-feasible point with tolerable suboptimality using parallel agent calls

▶ combining first-order methods with localization methods
▶ faster ADMM with analytic centers

Generic methods for distributed optimization 42

Research directions

Efficient methods for
large-scale problems

Leveraging structure
scalable methods that

exploit sparsity, low rank, etc

Accelerated schemes
unified framework for
accelerated methods
via electric circuits

Distributed optimization
efficient solvers for distri-

buted optimization problems

Generic methods for distributed optimization 43

Future directions

▶ compress NNs by replacing dense layers with MLR
▶ learning graph structure from data

▶ automating the development of accelerated algorithms
▶ search over admissible circuit designs
▶ find circuits which result in fast relaxation, e.g., critical damping

▶ recover near-feasible point with tolerable suboptimality using parallel agent calls
▶ combining first-order methods with localization methods

Generic methods for distributed optimization 44

Thanks!

Generic methods for distributed optimization 45

Factor form
▶ arrange factors such that A = B̃C̃T

... ...

Appendix 46

Compressed form

▶ Bl =

 Bl,1
...

Bl,pl

 ∈ Rm×rl , Cl =

 Cl,1
...

Cl,pl

 ∈ Rn×rl

▶ B =
[

B1 · · · BL]
∈ Rm×r, C =

[
C1 · · · CL]

∈ Rn×r

▶ r = r1 + · · ·+ rL is the MLR-rank of A

Appendix 47

Example: Linear system solve

▶ solve Ax = b with A positive definite MLR matrix
▶ n = 105

▶ dense matrix in single precision requires 37Gb
▶ hierarchical partition p1 = 1, p2 = 3, p3 = 7, p4 = 16, p5 = 105

▶ ranks r1 = 30, r2 = 20, r3 = 10, r4 = 5, r5 = 1
▶ compression ratio 750 : 1

Appendix 48

Example: Linear system solve

▶ direct dense solve using Cholesky
▶ extrapolated time (from 10s for 104 × 104 matrix) is 2.7h on M2 chip

▶ recursive SMW
▶ solve in 200ms on M2 chip

▶ MLR solve is ×50000 faster than the dense one

Appendix 48

Example: Discrete Gauss transform matrix
▶ Aij = e−∥ti−sj∥2

2/h2 and sj, ti ∈ Rd

▶ m = 5000, n = 7000, r = 28, L = 14, d = 3, and h = 0.2
▶ compression ratio 100 : 1

Method Error (%) Storage (×105)

LR 41.8 3.36
HODLR 72.5 3.39
Monarch 44.0 3.60
MLR bottom 16.8 3.36
MLR uniform 21.8 3.36
MLR top 25.8 3.36

0

5

10

15

20

25

ra
n

k
al

lo
ca

ti
on

0

5

10

15

20

25

ra
n

k
al

lo
ca

ti
on

0 5 10 15 20 25

iteration

0

5

10

15

20

25

ra
n

k
al

lo
ca

ti
on

l = 1

l = 2

l = 3

l = 4

l = 5

l = 6

l = 7

l = 8

l = 9

l = 10

l = 11

l = 12

l = 13

l = 14

Appendix 49

PSD MLR
▶ symmetric positive semidefinite (PSD) MLR matrices

▶ each block Al,k = Bl,kBT
l,k is PSD

... ...

▶ PSD MLR is a covariance matrix in multilevel factor model (MFM) [Aitkin+81]

Σ =
[

F D1/2] [
F D1/2]T

= FFT + D

Appendix 50

Factor fitting

▶ fix hierarchical partition and rank allocation
▶ optimize ∥PTAQ − Â(B,C)∥2

F over the factors B and C

... ...

(a) alternating least squares

+ + + +...

(b) block coordinate descent

Appendix 51

Rank allocation

▶ fix hierarchical partition
▶ optimize over the factors B and C and ranks r1, . . . , rL s.t. r1 + · · ·+ rL = r

rank exchange algorithm

R = PTAQ −
∑
j̸=l

blkdiag(Bj,1CT
j,1, . . . ,Bj,pjCT

j,pj)

+ + + +...

Appendix 52

Hierarchy fitting: Nested spectral dissection
1. R̃1 = (A − B1,1CT

1,1)

2. R1 = PT
1 R̃1Q1

▶ permutations PT
1 ,QT

1 maximize the sum of squares of residuals within the two diagonal
blocks

3. R̃2 = R1 −
[
B2,1CT

2,1 0
0 B2,2CT

2,2

]
4. . . .

Appendix 53

Multilevel factor model

y = Fz + e

▶ F ∈ Rn×s is structured factor loading matrix
▶ z ∈ Rs are factor scores, with z ∼ N (0, Is)

▶ e ∈ Rn are unique terms, with e ∼ N (0,D)

Appendix 54

Efficient computation

▶ computation of MLR Σ−1

▶ time complexity O(nr2 + pL−1rmaxr2)
▶ extra memory used is 3nr + 2pL−1rmaxr

▶ EM iteration
▶ time complexity O(pL−1nr2 + nr3 + pL−1nrN + pL−1rmaxr2)

Appendix 55

Example: Asset covariance matrix
▶ n = 5000, L = 6, N = 300, and r = 30
▶ compression ratio 80 : 1
▶ log-likelihood for factor model (left) and multilevel factor model (right)

0 20 40 60 80 100

iteration

1.18× 104

1.19× 104

1.2× 104

1.21× 104

1.22× 104

`(
F
,D

;Y
)/
N

MLE

Frob

0 20 40 60 80 100

iteration

`(
F
,D

;Y
)/
N

MLE

Frob

Appendix 56

Example: Synthetic multilevel factor model
▶ n = 10000, L = 6, r = 25, s = 174, SNR of 4
▶ compression ratio 200 : 1
▶ histograms over 100 runs each with sample size 200

−25600 −25400 −25200 −25000 −24800 −24600

E(`(F,D; y))

0.000

0.001

0.002

0.003

0.004

0.005

0.006
D

en
si

ty
Frob

MLE

Appendix 57

Automatic discretization: PEP

for given discretization (α, β, h), and η > 0, dissipativity can be checked by

maximize E2 − E1 + η⟨x1 − x⋆, y1 − y⋆⟩
subject to Es =

1
2∥vs

C − v⋆C∥2
DC

+ 1
2∥isL − i⋆L∥2

DL
, s ∈ {1, 2}

(v1, i1, x1, y1) is feasible initial point
(v2, i2, x2, y2) is generated by discrete optimization method from initial point
f ∈ F

▶ f, v1, i1, x1, y1, v⋆, i⋆, x⋆, y⋆ are the decision variables
▶ F is a family of functions (e.g., L-smooth convex)

Appendix 58

Agents

▶ when queried by coordinator at xi, agent returns

fi(xi), qi ∈ ∂fi(xi)

▶ agents can include private variables zi, with

fi(xi) = min
zi

Fi(xi, zi)

▶ to evaluate fi(xi) and qi ∈ ∂fi(xi) we solve an optimization problem

Appendix 59

Example: Supply chain

Source Trans-
shipment · · · Trans-

shipment Sink

▶ single commodity network with M trans-shipment components in series
▶ component i routes flows ai ∈ Rmi

+ to flows bi ∈ Rni
+ , with cost fi(ai, bi)

▶ flow is conserved: 1Tai = 1Tbi
▶ source and sink costs ψsrc(a1) + ψsink(bM)

▶ our instance
▶ M = 5 with (mi,ni): (20, 30), (30, 40), (40, 25), (25, 35), (35, 20)
▶ 300 variables; 4975 private variables

Appendix 60

	
	Multilevel low rank matrices
	
	Optimization algorithm design via electric circuits
	
	Generic methods for distributed optimization
	Appendix

