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Our focus

our setting

▶ substantial computational cost per agent

▶ small number of iterations is desirable

▶ care about feasibility, some suboptimality is tolerable

we propose (postprocessing) method that

▶ uses low-precision optimal dual variable

▶ recovers close to feasible primal point

▶ uses only parallel calls to agents; avoids sequential calls
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Distributed optimization

minimize f(x)
subject to Ax ≤ b

▶ x = (x1, . . . , xM ) ∈ Rn is variable, xi ∈ Rni

▶ f(x) =
∑M

i=1 fi(xi) is block separable

▶ fi : R
ni → R ∪ {∞} convex, closed and proper

▶ infinite values of f encode constraints

▶ A = (A1, . . . , AM ) ∈ Rm×n and b ∈ Rm are given
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Conjugate subgradient oracle

▶ for y ∈ Rm (dom f∗ = Rm), oracle returns x(y) ∈ ∂f∗(y)

−f∗(y) = inf
x∈dom f

(
f(x)− yTx

)

▶ no access to function values f(x) or subgradient in ∂f(x)

▶ neutral cutting plane for dual variable

{
λ̃ ∈ Rm | (−Ax(y) + b)T (λ̃− λ) ≤ 0, y = −ATλ

}
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Dual problem

solve the dual problem

▶ subgradient methods (Shor, 1962)

▶ localization methods
▶ analytic center cutting-plane method (ACCPM)
▶ maximum volume ellipsoid cutting-plane method
▶ Chebyshev center cutting-plane method

▶ we’ve settled on proximal point ACCPM
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Optimality conditions

▶ KKT conditions

x ∈ ∂f∗(y), y = −ATλ (1)

Ax ≤ b (2)

λj(Ax− b)j = 0, j = 1, . . . ,m (3)

λ ≥ 0 (4)

▶ primal and complementary slackness residuals for a pair (x, λ) ∈ Rn × Rm
+

rp = 1T (Ax− b)+, rc = λT |Ax− b|
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Primal recovery

given current prices yk = −ATλk = (yk1 , . . . , y
k
M )

1. agent i returns multiple offers z
(1)
i , . . . , z

(N)
i wrt yki = −AT

i λ
k

▶ −f∗
i (y

k
i ) ≤ fi(zi)− ykT

i zi ≈ −f∗
i (y

k
i )

▶ computed in parallel (clock time equivalent to single response)

2. central node constructs a convex combination of offers x̄ minimizing the residuals

minimize rp + rc
subject to x̄i = Ziui, i = 1, . . . ,M

1Tui = 1, ui ≥ 0, i = 1, . . . ,M
x̄ = (x̄1, . . . , x̄M )

don’t need to run primal recovery at every step k (periodic runs sufficient)
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Approximate conjugate subgradient oracle

▶ for any y, an ϵv-value suboptimal primal variable xv(y)

−f∗(y) ≤ f(xv(y))− yTxv(y) ≤ −f∗(y) + ϵv|f∗(y)|

▶ any convex combination x̄: f(x̄)− yT x̄ ≤ −f∗(y) + ϵv|f∗(y)|

▶ for any y, primal variable xp(y) with ϵp-perturbed prices

f(xp(y))− (y + δ)Txp(y) = −f∗(y + δ), δ ∈ [−ϵp|y|, ϵp|y|]

▶ for L-Lipschitz f∗, for any convex combination x̄: f(x̄)− yT x̄ ≤ −f∗(y) + ϵpL∥y∥
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Setting

▶ run localization method for solving the dual, compute λk

▶ price directed interface gives xk ∈ ∂f∗(−ATλk)

▶ x̄ returned by primal recovery method

▶ N = 10 suboptimal offers with ϵ = 10%-suboptimality

▶ primal recovery effective when m ≪ n
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Resource allocation

▶ M = 100 agents, m = 8 resources, n = 800

▶ ϵv = 10%-value suboptimality
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Resource allocation

▶ M = 100 agents, m = 8 resources, n = 800

▶ ϵp = 10%-perturbed prices
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Assignment problem

▶ M = 208 agents, m = 8, n = 1608

▶ ϵv = 10%-value suboptimality
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Assignment problem

▶ M = 208 agents, m = 8, n = 1608

▶ ϵp = 10%-perturbed prices
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Linear programming

▶ M = 100 agents, m = 8, n = 800

▶ ϵv = 10%-value suboptimality
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Linear programming

▶ M = 100 agents, m = 8, n = 800

▶ ϵp = 10%-perturbed prices
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Primal recovery method

▶ lower bound

L(xk, λk) = argmin
x

(f(x) + λkT (Ax− b)) = −f∗(−ATλk)− λkT b ≤ p⋆

▶ ϵv-value suboptimality

L(x̄v, λk) = f(x̄v) + λkT (Ax̄v − b) ≤ p⋆ + ϵv

M∑

i=1

|f∗
i (−AT

i λ
k)|

▶ ϵp-price perturbation

L(x̄p, λk) = f(x̄p) + λkT (Ax̄p − b) ≤ p⋆ + ϵpL

M∑

i=1

∥AT
i λ

k∥
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