2024
  1. Optimization algorithm design via electric circuits
    S. Boyd, T. Parshakova, E. Ryu, and J. Suh
    Accepted (Spotlight) to Conference on Neural Information Processing System, 2024
  2. Fitting multilevel factor models
    T. Parshakova, T. Hastie, and S. Boyd
    arXiv preprint arXiv:2409.12067, 2024
  3. Multilevel low rank matrices and applications
    T. Parshakova
    Stanford University, 2024
  4. Factor fitting, rank allocation, and partitioning in multilevel low rank matrices
    T. Parshakova, T. Hastie, E. Darve, and S. Boyd
    To appear in Optimization, Discrete Mathematics, and Applications to Data Sciences, edited by M. Rassias, A. Nikeghbali, and P. Pardalos, Springer, 2024
2023
  1. Efficient graph field integrators meet point clouds
    K. Choromanski, A. Sehanobish, H. Lin, Y. Zhao, E. Berger, T. Parshakova, and  others
    International Conference on Machine Learning, 2023
  2. Implementation of an oracle-structured bundle method for distributed optimization
    T. Parshakova, F. Zhang, and S. Boyd
    Optimization and Engineering, 2023
2022
  1. Interpolation method and apparatus for arithmetic functions
    W. Athas, Z. Nadeem, and T. Parshakova
    2022
    US Patent App. 17/085,971
  2. Methods and systems for producing neural sequential models
    T. Parshakova, M. Dymetman, and J.-M. Andreoli
    2022
    US Patent App. 17/018,754
2019
  1. Distributional reinforcement learning for energy-based sequential models
    T. Parshakova, J.-M. Andreoli, and M. Dymetman
    NeurIPS 2019 Optimization Foundations of Reinforcement Learning Workshop, 2019
  2. Global autoregressive models for data-efficient sequence learning
    T. Parshakova, J.-M. Andreoli, and M. Dymetman
    The SIGNLL Conference on Computational Natural Language Learning, 2019
  3. Latent question interpretation through variational adaptation
    T. Parshakova, F. Rameau, A. Serdega, I. Kweon, and D.-S. Kim
    IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019
  4. Latent Question Interpretation: Parameter Adaptation Using Interpretation Policy
    T. Parshakova
    KAIST, 2019
2018
  1. Latent question interpretation through parameter adaptation using stochastic neuron
    T. Parshakova, and D.-S. Kim
    In MRC@IJCAI, 2018
  2. UMorph: Self-change tracker to reflect yourself to the future and past
    T. Parshakova, and D. Saakes
    In Proceedings of the 2018 ACM Conference Companion Publication on Designing Interactive Systems, 2018
2017
  1. Furniture that learns to move itself
    T. Parshakova, M. Cho, A. Cassinelli, and D. Saakes
    In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2017
2016
  1. Ratchair: Furniture learns to move itself with vibration
    T. Parshakova, M. Cho, A. Cassinelli, and D. Saakes
    In ACM SIGGRAPH 2016 Emerging Technologies, 2016